整个会议室内,不复往日的盛况。
会议室内大概只有百人左右,而且一个个皆是无精打采,百无聊赖的样子。
甚至还有一些数学家,直接拿出手机玩了起来,完全不管台上那人讲的内容是什么。
顾律和之前一样,在后门偷偷摸摸的溜了进去。
后面几排完全是空的。
顾律随便找了一个位置坐了下来。
接着,抬头看向报告台上。
会议进行到现在,所有分会场的四十五分钟报告皆已结束。
现在的报告已经全部是各分支数学家申请的十分钟报告。
至于像顾律那样,申请下一场四十五分钟报告的情况,再也没有出现过。
顾律扶了扶鼻梁上那副用于遮掩样貌的无度数眼睛,目光落在站在台上那位正在进行报告的青年身上。
那位青年要比顾律大些,但应该是三十岁不到的年纪。
显然,那位青年是第一次登上这么大的舞台,神情有些紧张,说话还磕磕巴巴的。
但这位青年讲述的内容,提起了顾律的兴趣。
这位青年报告的内容,属于泛函分析中的算子理论方面。
《从广义加权bloch空间到bloch-型空间的积分型算子》!
这是这位青年报告的主题。
主要阐述的内容,是研究单位球上从广义加权bloch空间到bloch-型空间的积分型算子p(g,φ)的有界性和紧性。
顾律之所以感兴趣的一点是。
青年这场报告的最后,在研究的基础上,提出了三个全新的定理。
而其中的一个定理,让顾律看出了其与众不同之处。