其实,这部分的工作根本不需要出手。
吴征随便找个数学家,甚至找个稍微懂点物理的博士生过来,都可以轻松把这张轨道图轻松画出来。
这部分内容的工作,只是顺带的而已。
真正需要顾律费不少功夫去弄的,是整个落月阶段各项参数和轨道的设置。
…………
落月阶段,指的是探测器从环月椭圆轨道降落到月球表面的过程。
同样是整个探月计划最核心,难度最高的环节。
在最开始,嫦娥四号探测器应该是在近月点为100公里,远月点为400公里的环月椭圆轨道上进行环月飞行。
然后实施降轨控制,使嫦娥四号探测器进入近月点高度约15公里、远月点高度约100公里的预定月球背面着陆准备轨道。
这只是一个开始。
在嫦娥四号进入着陆准备轨道后,需要在月球背面的近月点进行动力下降。
整个动力下降过程又会分为6个阶段,分别是主减速段、快速调整段、接近段、悬停段、避障段、缓速下降段。
六个阶段,那就意味着需要六套不同的系统参数。
顾律需要一个个来计算。
这需要相当庞大的计算工作量。
顾律轻叹了口气,活动活动了手指,握紧笔开始工作。
首先,是第一阶段的主减速段。
顾律根据吴征提供数据中的嫦娥四号构型特点,在此基础上建立了小型月球探测器的导航、制导与控制系统(简称gnc系统)工作模型和质心、姿态动力学模型。
模型中考虑了各个发动机推力偏心、偏斜产生的影响,并考虑了gnc系统离散的工作特性。
然后,对末端水平速度约束条件下的主减速段制导律进行了研究。
利用开普勒轨道的轨道参数与末端运动参数的对应关系,将末端运动参数约束转化为轨道参数约束,从而将轨迹规划问题转化为有限推力变轨问题,进而通过最小二乘修正方法得到制导律。