第69章 提前到来的毕业考试

作者:向南向东看 加入书签推荐本书

“咳,咳”旁边的教务处老师看到二人竟然拉起了家常,出言打断,“由于时间比较紧,我们这就开始考试吧,李默同学。”

“今天上午预计的是3门科目的考试,《数学分析》,《高等代数》和《微积分方程》。由于是提前考试,所以不按照正常的考试时间进行。”

“中午12点之前,你把3份完成的试卷交给我就行。”说着他就把3份试卷发了下来。

第一份试卷是《数学分析》,

1.叶形线x=2t-t?,y=2t?-t?,0≤t≤2,求此曲线所围的图形面积。

这也太简单了,李默稍加思索就得出了答案,他在试卷上唰唰写道:

|y=tx,t00.511.52x00.7510.750y00.37511.1250,面积a=∫<0,1>(2t-t^41022)(2-2t)dt=∫<0,1>(4t-6t^2+2t^3)dt=(2t^2-2t^3+t^4/2)|<0,1>=1/2.

2.u=(x/y)^(1/z)在(1,1,1)处的所有偏导数.

这题也难不倒他,不到2秒,李默就推导出了答案:

u=u(x,y,z)?u/?x=[(x/y)^5261(1/z)]/(zx)=u/(zx)?u/?y=-[(x/y)^(1/z)]/(zy)=-u/(zy)?u/?z=-[(x/y)^(1/z)](1/z?)ln(x/y)=-u[ln(x/y)]/z?u=(x/y)^(1/z)在(1,41021,1)1653u=u(1,1,1)=1?u/?x=1,?u/?y=-1,?u/?z=0

3.求u=ln(sin(xy))的全微分

1秒,只用了1秒,李默直接写下了答案。

du=(?u/?x)dx+(?u/?y)dy?u/?x=y[cos(xy)]/[sin(xy)]?u/?y=x[cos(xy)]/[sin(xy)]du=(ydx+xdy)[cos(xy)]/[sin(xy)]

..........................

.........................

仅仅用时30分钟,李默就做完了《数学分析》的试卷,如果不是最后那道开放性题目,他用了6中方法阐述,还可以更快一点。

下一张试卷是《高等代数》。

1.设v1与v2分别是齐次方程组x1+x2+.....+xn=0及x1=x2=.....=xn的解空间,求v1,v2并证p^n=v1+v2,其中p^n为数域p上的n维向量空间。

答案:v1就是向量bai(1,1,...,1)的正交补空间,基为(1,-1,0,0,...,0),(du1,0,-zhi1,0,。。。,0),。。。,(1,0,。。。,-1),每个向量第dao一个分量为1,第k+1个分量为-1,其余分量为0,k=1,2,。。。,n-1。v2的基为(1,1,1,...,1)。容易看出,v1和v2是正交的(基向量之间是正交的),v1的维数是n-1,v2的维数是1,两者之和为n,因此两个子空间的和是直和,恰好是全空间。

1分钟,就完成了第一题。自从灵智升到了2级,他觉得自己可以很轻松的抓住解题思路。

旁边的周明看到李默已经完成了《数学分析》试卷,不由走到他身后,看了起来。只见眼前的稚嫩少年,做起题目像写文章一样,粉笔极速。

上一页 返回目录 下一页