众所周知,无论是仿人形态的机器人,还是仿动物形态的机器人,亦或者是人类本身,其关节都是相当关键的部分。
关节决定了这个人或者机器人的灵活度,负重等一系列性能。
和人一样,决定机器人灵活度的是关节。
针对一台机器设备,比如数控设备,所说的多少个自由度就是多少个关节。
正在进行碳基芯片加工的光时刻内就有使用机械臂,而每一个机械臂的一个轴就是一个关节。
对一台机器人来说,关节成本占硬件总成本的70%以上
如果关节处被损伤,那么对一个机器人来说是另一种致命的打击。
而且服务机器人、工业机器人或者战争机器人对关节的要求又大为不同。
比如工业机器人要求长久稳定性,对灵活性和自适应性要求不高,它们只需要按照规划好的路径运动就可以,不用有很多的变化
而服务机器人和战争机器人则不同,行走、运动等功能自然对关节的灵活性要求极高。
现代化的战争,机器人之所以登不了场的原因很多,信号传递,能源问题等等。
关节处太过脆弱也是其中之一。
作为整具身体活动的关键处和支撑处,即便是采用强度超高的钛合金、铬合金等材料制造,在面对热武器的攻击时,也显得相当脆弱。
如果说机器人身体的其他部分还可以使用超强度的合金板材进行覆盖保护的话,关节处是没法使用这种保护的。
给关节处增加外盖保护材料,就相当于限制了关节处的灵活度。
增加防护能力,丧失灵活度,那么就相当于是一个活靶子。
对手一轮火力覆盖就直接给你炸上天了。
目前在机器人领域这一块走的最远的是米国。
早在2017年的时候,来自米国的波士顿动力公司公开亮相了一台人形机器人。
而在展示过程中的跳跃、旋转、后空翻的视频惊艳了整个机器人圈。
各国纷纷感叹,这个机器人的关节也太灵活了。