除此之外,它使用的原材料,都相对而言较为容易获得。
比如氘,氘作为氢的同位素自然存在,且通常很容易获取。氢同位素之间大的质量差异使得将他们分离非常容易。
这一点不像高质量的铀的同位素分离,铀的同位素分离就可以说是折腾死个人了。
氘容易获得,另外一个氚也相对容易。
氚也是自然存在的氢的同位素,只不过是由于其半衰期较短,只有12.32年,所以从自然界的获取难度较高,但氚可以通过中子轰击锂板来制造。
所以获取难度上相对而言也不算很困难。
不过相对而言,dt可控核聚变也是优缺点的。
首先是产生的中子太多,会导致反应堆材料被中子活化。
其次是反应过程产生的能量只有20%被带电粒子携带,而剩余的大部分能量被中子带走。
这一点限制了直接能量转化技术。
除此之外,还有整个反应会涉及到具有反射性的氚。
类似于氢原子,氚原子其实也不容易被控制,在聚变的过程这种,往往也会有一部分泄露出反应堆,而研究表明氚的泄露会造成可观的环境核污染。
当然,相对于它容易实现,能提供巨额能源的优点来说,这些缺点就不算什么了。
而第二代则是氘和氦-3聚变可控核聚变,俗称‘二代聚变’。
相对比第一条路线来说,如果选用二代氘和氦-3进行聚变。
第一个优势是燃料便宜,氘很容易分离得到,省去了数量稀少的氚后,不需要研究氚自持技术,以及节省了锂!
而氦三虽然在地球上的储量较少,但隔壁月球的存量人类几亿年都用不完。
所以也不必如何考虑获取它。
第二个优点则是二代聚变产生的中子数量只有氘-氚聚变的三分之一甚至五分之一,这是个很不错的地方。
越少的中子辐射,那么中子辐照的问题处理起来就越简单。
如果中子辐照减少到dt聚变的五分之一,那么以现有的技术,都能做到对其进行控制或者防护。