第410章 数学的尽头是哲学

作者:六千来世 加入书签推荐本书

第三步:s1-s2;可以得到等式

s1-s2=4+8+12+16+20+∞

=4+8+12+16+20+∞

=4(s1)

第四步:转换函数关系表达方式;由此可得,s1=-1/3*s2。

这时候,只需要求出s2等于多少,就可以知道s1等于多少了;

这时候,再拿出一个s2来。设定其为s2=1-2+3-4+5-6+∞;

然后把两个s2错位相加,如下列式

s2=1-2+3-4+5-6+∞

+

s2=1-2+3-4+5-6+∞

2s2=1-1+1-1+1-1+∞

那么4s2=1

由此可知,s2=1/4;于是s1=-1/12(作者后台的位置是对齐的,就是不知道传上去后齐不齐)

则可以得出2s2=1-2+3-4+5-6+∞

虽然拉马努金用简单明了的公式证明了欧拉函数,但是人们总觉得这玩意有些太违背于常识;于是出于驳倒欧拉函数的目的;继拉马努金之后,人们纷纷开始验证起欧拉函数来——这一次,人们用上了黎曼函数。

黎曼函数的推导过程不提,人们发现……最终的答案还是那个该死的-1/12!

或许是人们完全无法接受这个在数学上无懈可击,但在现实中完全不可能发生的结果;于是当时的数学家为了弄清楚究竟是怎么回事,就一步步地把黎曼函数的证明过程图像化,最终……得出了一副让当时的数学家大惊失色,哲学家却欣喜若狂的图案——倒c型图案(没法子,不能画图,不太直观。)

这副图案表达的大体意思就是……这组数字的和,刚开始的时候,是呈现弧形慢慢变大的;等到变到非常大的时候,就忽然来了个急转弯,开始逐渐变小,在坐标象限图上呈现倒c型曲线,宛如一个缺了一个口的圆。

作为数学史上的一段趣闻,后世哪怕高中生都知道这个故事和那个倒c型曲线,更别提曾经被高数课程虐的死去活来的林可染了;

只不过……她虽然知道杨铸聊的重点是那个倒c型曲线,但却不明白,杨铸为什么要聊这个?

上一页 返回目录 下一页