比如眼前的这份——
《有关奇完全数不存在的证明》。
这份手稿证明了奇完全数并不存在,也就是说所有的完全数都是偶完全数。
而在数学领域。
提到偶完全数,就不得不提到另一个概念∶
梅森素数。
梅森素数是梅森数的一个概念。
所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为mp.
如果梅森数是素数,就称为梅森素数。
目前发现的所有完全数都是偶完全数,并且和梅森素数一一对应,无一例外。
也就是找到了多少个梅森素数,便有多少个完全数。
因此一直以来。
是否存在无穷多个梅森素数这个问题,始终都是是数论中未解决的著名难题之一。
或者再准确一点来说。
是否存在奇完全数,本身就是梅森素数班展出来的一个枝干问题。
截止到2022年。
全球只发现了51个梅森素数,最大的是m82589933,也就是即2~82589933-1。
如果说《有关奇完全数不存在的证明》是个需要同阶段...也就是四年内其他人也扑街才有机会提得菲尔兹奖的运气型论文
那么如果能解决梅森素数的问题,则无疑是个标准的菲尔
兹奖成果。
当然了。