其他没有名字的就更不用说了。
将所有人脸部变化都纳入眼球的史蒂芬教授脸色平静,他好奇地望着陆舟。
他想知道,这道题陆舟能够做得出来吗?
陆舟眉头紧锁,这道题的棘手出乎他的意料。
而且他也认出了史蒂芬教授出的这道题目。
这要往前溯源到【x3+y3+z3=3】这个方程式。
很多人肯定会想到【1、1、1】这个整数解,实际上还有第2组整数解,是【4、4、-5】。
但,会不会有第三组整数解呢?
1953年,数学家louismordell便提出这样的一个疑问。
有意思的是,这个看似没技术含量的问题,困扰了数学界很久,直到今日都没有解决。
再到1992年,又一个数学家rogerheath-brown在研究弱近似原则失效形式x3+y3+z3=kw3的零点密度问题时,提出了一个猜想:对于任意一个正数k?±4(mod9),丢番图方程k=x3+y3+z3有无穷多组整数解(x,y,z)。
【如果没学过初等数论的话,就把k?±4(mod9)看做k≠9n+4,也就是k≠9n+4或k≠9n+5】
每个k都有无穷多组整数解。
当前数学界在对于k小于100的情况下,除了k=3的第三组整数解以外,只有k=33、42没有找到整数解。
一个困扰数学界还没解决的问题,被史蒂芬教授拿出来做考题。
陆舟真的想问问对方:教授,那您知道答案吗?
他没有说,反倒精神格外振奋。
一道难倒全球数学界几十年的难题。
要是……被他解决了,岂不是很酷?
陆舟专心致志看着题目,大脑开始疯狂运转。
先要明白为什么数学家heath-brown的猜想中为什么要有k?±4(mod9)的条件。