叶秋并不知道发生在院长办公室的这一幕。
顺利完成一试后,休息半小时,上午十一点,二试正式开始。
五道简答题,整体难度和往常的模拟试题相当。
叶秋只花了半小时的时间,就完成了全部五道题的解答。
最后,他翻到了附加题所在的页面。
题目很简单,任何经历过小学教育的人基本上都能看懂。
“求证:对于任意一个正整数n,并且按照以下的规律进行变换:
如果是个奇数,则下一步变成3n1。
如果是个偶数,则下一步变成n/2。
无论n是怎样一个数字,最终都无法逃脱回到谷底1!”
叶秋一脸懵逼地看着眼前的题目,这个命题很简单,甚至可以说不证自明。
但简单,意味着坚不可摧!
一整座数学大厦,都是由底下一些不证自明的坚实公理组成的。
比如欧式几何中的五大定理,加法交换律和结合律,乘法原理等等。
恰恰是这样简单的命题,想要证明它,却难如登天。
比如历史上大名鼎鼎的哥德巴赫猜想,整个命题仅有一句话:任一大于2的整数都可写成三个质数之和。
然而,自1742年哥德巴赫在写给欧拉的信中提出这个猜想以来,距今已经268年,人类进入了信息时代,依旧没有人能够证明。
眼前这道题目,已经让叶秋隐隐感受到如同哥德巴赫猜想那种的大道至简的感觉。
“陶哲轩该不会拿出某个数学史上的著名猜想,让我们去解决吧?”
叶秋的脑海里,蓦然闪过这样一个念头。
叶秋如果稍微了解一下数学史,恐怕都不会有这样的疑问。