第七十七章 冰雹猜想

作者:无聊的钢镚 加入书签推荐本书

因为眼前这道题目,正是数学史上大名鼎鼎的考拉兹猜想,又称作冰雹猜想。

这个问题自1937年一经提出,就风靡全球,无论是小学、中学还是高校师生都为之着迷。

数十年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。

虽然取得了一定的成果,但始终没能被彻底解决。

而这一问题之所以被称之“冰雹猜想”,由于在一般情况下,冰雹猜想在演算时数值时大时小,恰如天降冰雹时尺寸的忽大忽小,所以得名。

比如,从n=6开始:6是偶数,除以2变成3;3是奇数,乘以3再加1变成10;10是偶数,除以2变成5;5是奇数,乘以3再加1变成16;16是偶数,除以2变成8;8是偶数,除以2变成4;4是偶数,除以2变成2;2是偶数,除以2变成1。

大家注意,此时数字已经变成了1,而1是奇数,乘以3再加1又等于4。于是,这个数列就会陷入4-2-1-4-2-1的循环了。

比如从数字7开始,数列最大会变成52,但是经过16步操作,还是会回到1。

从数字27开始,数列最大会变成9232,但是经过111步,还是会回到1。

实际上,人们已经尝试了2的68次方以下的每一个整数,从任意一个数出发,最终都会回到1。

1937年,德国数学家考拉兹提出了这个猜想,称为考拉兹猜想。

由于这些数字总是上上下下的变化,最后变成1,就好像冰雹在空中总是上下运动,最终落到地面上一样,所以也叫做冰雹猜想。

上一页 返回目录 下一章