也就是说碳原子和银原子并不是直接结合的,或者说,此时这两种元素甚至都没有以标准的原子形式存在,更接近于一种离子化合物。
这种银碳形成的离子化合物,除了用来制造银碳复合材料水溶液制备电化学电容外,并没有太大的用途。
除了ag2c2(碳化银)外,还有一种碳纳米管—银复合纳米材料,但那并不是发化合物,甚至都不是离子化合结构,仅仅是人工加工出来的物品,对于石墨烯单晶晶圆的加工并没有什么意义。
这次韩元使用银离子来给石墨烯单晶晶圆进行离子掺杂,其整个过程中使用了轨道杂化技术。
通过计算,可以在一定的温度、压强以及其辅助催化材料的作用下,银离子会和石墨烯单晶中的一部分碳原子进行杂化。
在这个过程中,碳原子可以利用它的s轨道和p轨道通过杂化作用和银离子形成σ键。
除此之外,碳原子还能利用剩余的p轨道进行互相叠加,通过pπ-pπ相互作用形成多重键。
在σ键以及pπ-pπ相互作用形成多重键的作用下,形成碳银杂化轨道离子会与其他未参与作用的碳原子牢牢结合,稳定石墨烯单晶晶圆,为石墨烯单晶晶圆提供一定性能的耐热能力,以及加强石墨烯单晶材料的导电性能。
这就是银离子注入后的基本用途。
至于硅离子的用途,那就更简单了。
如果说银离子的注入,一部分作用可以理解为将高速公路修的更宽敞更平稳,让电子在上面奔跑更加安全的话;那么硅离子的注入,就是给这条高速公路修了收费站。
它控制着电子这辆车该去哪里,不该去哪里。
别忘记了石墨烯单晶材料虽然优秀,但它本身是有一个致命缺点的。
那就是石墨烯的带隙问题。
这个问题对于碳基芯片来说可是超级致命级别的缺点。
就好像全国的高速公路没有出入口,没有收费站一样,所有的汽车(电子)会在上面到处乱串。
高纯度的碳化硅晶材本身就是一种性能相当优异的半导体材料。
而硅离子注入到石墨烯单晶材料中后,会与里面的碳原子形成稳定的碳化硅结构。
和掺杂银离子一样,通过特殊手段,碳原子可以利用它的s轨道和p轨道通过杂化作用和硅离子形成σ键,也能在pπ-pπ相互作用形成多重键,起到稳定石墨烯单晶晶圆的作用。
除此之外,硅离子因为本身电子的特性,它除了碳原子具备的s轨道和p轨道外,还多出来一个d轨道。
被离子注入进石墨烯材料中的硅离子中的d轨道会参与成键,除了形成对应的sp3d和sp3d2等额外的杂化轨道外,还会增强pπ-pπ相互作用形成多重键的稳定性。